600字范文,内容丰富有趣,生活中的好帮手!
600字范文 > Android MMKV使用及 MMAP原理

Android MMKV使用及 MMAP原理

时间:2023-05-03 17:21:06

相关推荐

Android MMKV使用及 MMAP原理

什么是MMKV

MMKV——基于 mmap 的高性能通用 key-value 组件,底层序列化/反序列化使用 protobuf 实现,性能高,稳定性强。

MMKV 是基于 mmap 内存映射的移动端通用 key-value 组件,底层序列化/反序列化使用 protobuf 实现,性能高,稳定性强。

通过 mmap 内存映射文件,提供一段可供随时写入的内存块,App 只管往里面写数据,

由操作系统负责将内存回写到文件,不必担心 crash 导致数据丢失。

优点

MMKV 是基于 mmap 内存映射的 key-value 组件

性能高,稳定性强(底层序列化/反序列化使用 protobuf 实现)

支持多进程共享(mmap原理支持)

支持SharedPreferences直接迁移

支持类型:boolean、int、long、float、double、byte[]、String、Set、Parcelable

简单使用

导入包

dependencies {implementation 'com.tencent:mmkv:1.2.11'// replace "1.2.11" with any available version}

MMKV 的使用非常简单,所有变更立马生效,无需调用 sync、apply。

配置 MMKV 根目录

在 App 启动时初始化 MMKV,设定 MMKV 的根目录(files/mmkv/),例如在 Application 里:

public void onCreate() {super.onCreate();String rootDir = MMKV.initialize(this);System.out.println("mmkv root: " + rootDir);}

CRUD 操作

MMKV 提供一个全局的实例,可以直接使用:

import com.tencent.mmkv.MMKV;...MMKV kv = MMKV.defaultMMKV();kv.encode("bool", true);System.out.println("bool: " + kv.decodeBool("bool"));kv.encode("int", Integer.MIN_VALUE);System.out.println("int: " + kv.decodeInt("int"));kv.encode("long", Long.MAX_VALUE);System.out.println("long: " + kv.decodeLong("long"));kv.encode("float", -3.14f);System.out.println("float: " + kv.decodeFloat("float"));kv.encode("double", Double.MIN_VALUE);System.out.println("double: " + kv.decodeDouble("double"));kv.encode("string", "Hello from mmkv");System.out.println("string: " + kv.decodeString("string"));byte[] bytes = {'m', 'm', 'k', 'v'};kv.encode("bytes", bytes);System.out.println("bytes: " + new String(kv.decodeBytes("bytes")));

SharedPreferences 迁移

MMKV 提供了 importFromSharedPreferences() 函数,可以比较方便地迁移数据过来。

public int importFromSharedPreferences(SharedPreferences preferences) {Map<String, ?> kvs = preferences.getAll();if (kvs != null && kvs.size() > 0) {Iterator var3 = kvs.entrySet().iterator();while(var3.hasNext()) {Entry<String, ?> entry = (Entry)var3.next();String key = (String)entry.getKey();Object value = entry.getValue();if (key != null && value != null) {if (value instanceof Boolean) {this.encodeBool(this.nativeHandle, key, (Boolean)value);} else if (value instanceof Integer) {this.encodeInt(this.nativeHandle, key, (Integer)value);} else if (value instanceof Long) {this.encodeLong(this.nativeHandle, key, (Long)value);} else if (value instanceof Float) {this.encodeFloat(this.nativeHandle, key, (Float)value);} else if (value instanceof Double) {this.encodeDouble(this.nativeHandle, key, (Double)value);} else if (value instanceof String) {this.encodeString(this.nativeHandle, key, (String)value);} else if (value instanceof Set) {this.encode(key, (Set)value);} else {simpleLog(MMKVLogLevel.LevelError, "unknown type: " + value.getClass());}}}return kvs.size();} else {return 0;}}

mmap原理

什么是mmap

mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系。实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上(此时只有一次跨进程),即完成了对文件的操作而不必再调用read,write等系统调用函数。相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享。如下图所示:

由上图可以看出,进程的虚拟地址空间,由多个虚拟内存区域构成。虚拟内存区域是进程的虚拟地址空间中的一个同质区间,即具有同样特性的连续地址范围。。

linux内核使用vm_area_struct结构来表示一个独立的虚拟内存区域,由于每个不同质的虚拟内存区域功能和内部机制都不同,因此一个进程使用多个vm_area_struct结构来分别表示不同类型的虚拟内存区域。各个vm_area_struct结构使用链表或者树形结构链接,方便进程快速访问,如下图所示:

vm_area_struct结构中包含区域起始和终止地址以及其他相关信息,同时也包含一个vm_ops指针,其内部可引出所有针对这个区域可以使用的系统调用函数。这样,进程对某一虚拟内存区域的任何操作需要用要的信息,都可以从vm_area_struct中获得。mmap函数就是要创建一个新的vm_area_struct结构,并将其与文件的物理磁盘地址相连。

mmap内存映射原理及过程

mmap内存映射的实现过程,总的来说可以分为三个阶段:

(一)进程启动映射过程,并在虚拟地址空间中为映射创建虚拟映射区域

进程在用户空间调用库函数mmap,原型:void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

在当前进程的虚拟地址空间中,寻找一段空闲的满足要求的连续的虚拟地址

为此虚拟区分配一个vm_area_struct结构,接着对这个结构的各个域进行了初始化

将新建的虚拟区结构(vm_area_struct)插入进程的虚拟地址区域链表或树中

(二)调用内核空间的系统调用函数mmap(不同于用户空间函数),实现文件物理地址和进程虚拟地址的一一映射关系

为映射分配了新的虚拟地址区域后,通过待映射的文件指针,在文件描述符表中找到对应的文件描述符,通过文件描述符,链接到内核“已打开文件集”中该文件的文件结构体(struct file),每个文件结构体维护着和这个已打开文件相关各项信息。

通过该文件的文件结构体,链接到file_operations模块,调用内核函数mmap,其原型为:int mmap(struct file *filp, struct vm_area_struct *vma),不同于用户空间库函数。

内核mmap函数通过虚拟文件系统inode模块定位到文件磁盘物理地址。

通过remap_pfn_range函数建立页表,即实现了文件地址和虚拟地址区域的映射关系。此时,这片虚拟地址并没有任何数据关联到主存中。

(三)进程发起对这片映射空间的访问,引发缺页异常,实现文件内容到物理内存(主存)的拷贝
注:前两个阶段仅在于创建虚拟区间并完成地址映射,但是并没有将任何文件数据的拷贝至主存。真正的文件读取是当进程发起读或写操作时。

进程的读或写操作访问虚拟地址空间这一段映射地址,通过查询页表,发现这一段地址并不在物理页面上。因为目前只建立了地址映射,真正的硬盘数据还没有拷贝到内存中,因此引发缺页异常。

缺页异常进行一系列判断,确定无非法操作后,内核发起请求调页过程。

调页过程先在交换缓存空间(swap cache)中寻找需要访问的内存页,如果没有则调用nopage函数把所缺的页从磁盘装入到主存中。

之后进程即可对这片主存进行读或者写的操作,如果写操作改变了其内容,一定时间后系统会自动回写脏页面到对应磁盘地址,也即完成了写入到文件的过程。

注:修改过的脏页面并不会立即更新回文件中,而是有一段时间的延迟,可以调用msync()来强制同步, 这样所写的内容就能立即保存到文件里了。

mmap()和常规文件(常规跨进程)操作的区别

进程发起读文件请求。

内核通过查找进程文件符表,定位到内核已打开文件集上的文件信息,从而找到此文件的inode。

inode在address_space上查找要请求的文件页是否已经缓存在页缓存中。如果存在,则直接返回这片文件页的内容。

如果不存在,则通过inode定位到文件磁盘地址,将数据从磁盘复制到页缓存。之后再次发起读页面过程,进而将页缓存中的数据发给用户进程。

常规文件和mmap操作原理区别:

常规文件操作为了提高读写效率和保护磁盘,使用了页缓存机制。这样造成读文件时需要先将文件页从磁盘拷贝到页缓存中,由于页缓存处在内核空间,不能被用户进程直接寻址,所以还需要将页缓存中数据页再次拷贝到内存对应的用户空间中。这样,通过了两次数据拷贝过程,才能完成进程对文件内容的获取任务。写操作也是一样,待写入的buffer在内核空间不能直接访问,必须要先拷贝至内核空间对应的主存,再写回磁盘中(延迟写回),也是需要两次数据拷贝。

而使用mmap操作文件中,创建新的虚拟内存区域和建立文件磁盘地址和虚拟内存区域映射这两步,没有任何文件拷贝操作。而之后访问数据时发现内存中并无数据而发起的缺页异常过程,可以通过已经建立好的映射关系,只使用一次数据拷贝,就从磁盘中将数据传入内存的用户空间中,供进程使用。

总而言之,常规文件操作需要从磁盘到页缓存再到用户主存的两次数据拷贝。而mmap操控文件,只需要从磁盘到用户主存的一次数据拷贝过程。说白了,mmap的关键点是实现了用户空间和内核空间的数据直接交互而省去了空间不同数据不通的繁琐过程。因此mmap效率更高。

mmap优点总结

由上文讨论可知,mmap优点共有一下几点:

对文件的读取操作跨过了页缓存,减少了数据的拷贝次数,用内存读写取代I/O读写,提高了文件读取效率。

实现了用户空间和内核空间的高效交互方式。两空间的各自修改操作可以直接反映在映射的区域内,从而被对方空间及时捕捉。

提供进程间共享内存及相互通信的方式。不管是父子进程还是无亲缘关系的进程,都可以将自身用户空间映射到同一个文件或匿名映射到同一片区域。从而通过各自对映射区域的改动,达到进程间通信和进程间共享的目的。

同时,如果进程A和进程B都映射了区域C,当A第一次读取C时通过缺页从磁盘复制文件页到内存中;但当B再读C的相同页面时,虽然也会产生缺页异常,但是不再需要从磁盘中复制文件过来,而可直接使用已经保存在内存中的文件数据。

可用于实现高效的大规模数据传输。内存空间不足,是制约大数据操作的一个方面,解决方案往往是借助硬盘空间协助操作,补充内存的不足。但是进一步会造成大量的文件I/O操作,极大影响效率。这个问题可以通过mmap映射很好的解决。换句话说,但凡是需要用磁盘空间代替内存的时候,mmap都可以发挥其功效。

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。