600字范文,内容丰富有趣,生活中的好帮手!
600字范文 > 已知:抛物线y=a(x-1)2+9经过点 顶点为A 它的对称轴AD与直线y=x及x轴分别交于点C

已知:抛物线y=a(x-1)2+9经过点 顶点为A 它的对称轴AD与直线y=x及x轴分别交于点C

时间:2022-07-31 01:07:29

相关推荐

已知:抛物线y=a(x-1)2+9经过点 顶点为A 它的对称轴AD与直线y=x及x轴分别交于点C

问题补充:

已知:抛物线y=a(x-1)2+9经过点,顶点为A,它的对称轴AD与直线y=x及x轴分别交于点C,点D.

(1)求a的值;

(2)过该抛物线的顶点A向直线y=x作垂线,垂足为B,试判断点B是否在抛物线上?

(3)设点P是该抛物线上的一个动点,是否存在半径为的⊙P,且⊙P既与直线y=x相切又与x轴相离?若有,求出点P的坐标;若无,请说明理由.

答案:

解:(1)把点代入y=a(x-1)2+9得:

∴,

答:a的值是-.

(2)答:点B是在抛物线上.

理由是:把代入y=a(x-1)2+9,得:

抛物线的解析式为:,顶点A(1,9),

作AB⊥直线y=x,垂足为B,依题意得:C(1,1),

∴△ODC是等腰直角三角形,,

∴∠OCD=∠ACB=45°,

∴△ABC是等腰直角三角形,

在Rt△ABC中,AC=9-1=8,,

∴,

作BT⊥x轴于点T,在Rt△OBT中,,

∴B(5,5),

把点B(5,5)代入,左边=5,右边=,

∴左边=右边,

∴B(5,5)在抛物线上.

(3)解:由(2)得△ABC是等腰直角三角形,,

又AB⊥直线y=x,即点A到直线y=x的距离为,

即点P与点A重合时,⊙P与直线y=x相切,

∵点P(1,9)到x轴的距离为9,,

∴⊙P与x轴相离,

故点P1(1,9)符合题意,

①当⊙P在直线y=x的左上方时,

设过点A(1,9)且平行于直线y=x的直线l的解析式为:y=x+b,

∴9=1+b,

∴b=8,

∴直线l的解析式为:y=x+8,

∵直线l平行直线y=x,AB⊥直线l,,

∴直线l到直线y=x的距离为,

则点P可能在直线l上,故设符合条件的点P的坐标为(x,x+8),

把点P(x,x+8)代入,解得:x=1或x=-3,

∴P1(1,9)或P2(-3,5),

∵P2(-3,5)到x轴的距离为5,,

∴⊙P2与x轴相交,

∴点P2不符合题意,舍去;

②当⊙P在直线y=x的右下方时,根据图形的对称性,同理可得:

距离为且平行于直线y=x的直线l的解析式为:y=x-8,

∴点P可能在直线l上,故设符合条件的点P的坐标为(x,x-8),

把点P(x,x-8)代入,解得:或,

∴或,

∵到x轴的距离为,

∴⊙P3与x轴相交,故点P3不合题意,舍去.

∵到x轴的距离为,

∴⊙P4与x轴相离

综合上述:符合条件的点P共有2点,它们的坐标分别是(1,9)、.

答:设点P是该抛物线上的一个动点,存在半径为的⊙P,且⊙P既与直线y=x相切又与x轴相离,点P的坐标是(1,9),(-1-2,-9-2).

解析分析:(1)把点代入y=a(x-1)2+9求出即可;(2)把代入y=a(x-1)2+9,求出抛物线的解析式和顶点A的坐标,作AB⊥直线y=x,垂足为B,得出C(1,1),推出△ODC、△ABC是等腰直角三角形,求出,作BT⊥x轴于点T,求出OT,得出B(5,5),把点B(5,5)代入看左边、右边是否相等即可;(3)由(2)得出,点A到直线y=x的距离为,推出⊙P与直线y=x相切、⊙P与x轴相离,①当⊙P在直线y=x的左上方时,设过点A(1,9)且平行于直线y=x的直线l的解析式为:y=x+b,代入求出直线l的解析式,推出点P可能在直线l上,故设符合条件的点P的坐标为(x,x+8),把点P(x,x+8)代入,求出即可;②当⊙P在直线y=x的右下方时,根据图形的对称性,同理可得直线l的解析式,设符合条件的点P的坐标为(x,x-8),把点P(x,x-8)代入求出即可.

点评:本题主要考查对解一元二次方程,等腰直角三角形的性质,二次函数图象上点的坐标特征,直线与圆的位置关系,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.

已知:抛物线y=a(x-1)2+9经过点 顶点为A 它的对称轴AD与直线y=x及x轴分别交于点C 点D.(1)求a的值;(2)过该抛物线的顶点A向直线y=x作垂线 垂

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。